Резка металла. Технологии резки.

Современный уровень технологий превращает фантастику в реальность.

Но это не фантастика, теперь можно увидеть своими глазами на любом крупном металлургическом или машиностроительном предприятии: плазма, лазеры или струя воды, разрезающая сталь толщиной 300 мм.

Резка металла – это отделение частей (заготовок) от сортового, листового или литого металла. Различают механическую (при помощи ножниц, пилы, резцов), ударную (рубка) и термическую резку.

Термическая резка – обработка металла посредством нагрева.

По форме и характеру реза может быть разделительная (разделение металла на несколько частей) и поверхностная резка (например, резка отверстий в детали), по шероховатости реза – заготовительная и чистовая, когда не требуется дальнейшая обработка фрезерованием.

Мы решили не затрагивать ручные инструменты для резки металла такие, как «болгарка» и шлицевые ножницы, посчитав эти способы малоэффективными и неинтересными. И остановились на шести самых популярных видах резки металла: гильотина, ленточно-пильный станок, газокислородная, плазменная, лазерная и гидроабразивная резка. Каждый из них имеет свои преимущества и недостатки, ограничен по толщине и виду разрезаемого металла, способен обеспечить определенный уровень качества поверхности. В связи с этим, в качестве итога приведена сводная таблица, где отражены оценки того или иного вида резки по основным показателям. Максимальная оценка – 10 баллов, минимальная – 1 балл. Стоит отметить, что эти цифры являются довольно субъективными, однако отражают основные преимущества и недостатки того или иного метода.

Гильотина: от орудия палача до инструмента для резки металла

В 1789 году во Франции доктор Гильотен показал Законодательному собранию свое изобретение – гильотину. Изначально предполагалось использовать ее как инструмент для самой гуманной казни. Она представляла собой пару столбов высотой 5 м с подвешенным между ними большим лезвием. До нашего времени ее конструкция не изменилась кардинально, однако сегодня она используется не для обезглавливания, а для отрезания частей листового металла. Согласитесь, действительно более гуманное применение.

В основе метода лежит использование механических средств – специальных ножниц и ножей по металлу. Сначала мастер помещает металлический лист на рабочий стол станка и фиксирует его при помощи прижимной балки. Затем устанавливает нож и совершает резку. Гильотина позволяет получить идеально ровный край, без зазубрин, заусенцев и лишних кромок. При этом кривизна среза равна нулю, т.к. отрезание производится лезвием по всей ширине листа одновременно.

Сегодня существует четыре вида гильотин для рубки металла: ручные, гидравлические, пневматические и электромеханические. Принцип их действия одинаков, но в последних трех видах для точности и безопасности используется электроника, а некоторые станки способны резать металл как поперек, так и вдоль. Рубка металла гильотиной используется в основном для заготовительных работ.

Недостатки метода:

Ограниченность по типу металла и толщине разрезаемого листа (для гидравлических машин максимум 6 мм).
Невысокая точность получаемых полос, которая во многом зависит от квалификации оператора.
Нельзя выполнить фигурную резку.

Ленточно-пильная резка

Редкая выставка по металлообработке обходится без показа ленточно-пильного станка новой разработки. Такая популярность обусловлена невысокой стоимостью оборудования, простотой в обслуживании и приемлемой производительностью. В качестве режущего инструмента используется ленточная пила, натянутая на шкивах.

Средняя скорость резки ленточно-пильного станка (ЛПС) превышает 100 мм/мин. Современные модели оснащаются электроникой и широким спектром дополнительного оборудования, которое позволяет легко приспособить станок к технологической линии производства.

При резке на ЛПС обеспечивается точное соответствие заданным параметрам, а место распила практически не нуждается в дополнительной обработке (за исключением производства высокоточных изделий или изделий с гладкой поверхностью). Станок неприхотлив к виду обрабатываемого материала – режет абсолютно все, а ширина реза составляет всего 1,5 мм.

Если при определении скорости резания и подачи нет возможности воспользоваться рекомендациями производителя, то выяснить оптимальные значения можно по стружке: толстая с голубым отливом стружка – показатель слишком высокой скорости подачи, пылеобразная стружка – слишком низкой. При оптимальном режиме стружка слабо вьющаяся.
Одно из важнейших условий при работе на ленточно-пильных автоматах – точный выбор шага зубьев режущего полотна. Подобрать шаг полотна, который соответствует сечению распиливаемого профиля, помогут специальные таблицы. Не меньшее значение имеют скорость подачи и скорость резки.

Одно из главных преимуществ ЛПС – возможность резки под углом. Однако, как и в предыдущем случае, на ЛПС невозможно получить фигурный рез, а размеры заготовок ограничены возможностями станка.

Газокислородная резка

На сегодняшний день газокислородная резка является, пожалуй, самым популярным видом резки металла за счет высокой производительности. Она обеспечивается, благодаря совершенно иному принципу действия, который заключается в горении металла. Перед этим обязателен предварительный подогрев места резки до температуры воспламенения, который производится подогревательным пламенем резака без подвода режущего кислорода. В зависимости от толщины металла и состояния его поверхности, время начального подогрева колеблется от 5 до 40 секунд. По достижении достаточного нагрева подают кислород, и когда его струя прорежет всю толщину металла, начинают равномерное перемещение резака по линии реза. Кислород режет подогретый металл и одновременно удаляет образующиеся оксиды, а за счет выделяющийся теплоты горения подогреваются соседние слои металла. При этом срез сопла должен все время находиться от поверхности детали на одинаковом расстоянии, которое подбирается опытным путем. Максимальная толщина газокислородной резки металла составляет 200 мм.

Однако газокислородной резке поддаются далеко не все металлы. Например, вам никогда не удастся разрезать алюминий. Во-первых, его температура горения 900°С, а плавления – 660°С, следовательно, гореть он будет только в жидком состоянии, и получить стабильную форму реза просто невозможно. Алюминий при горении образует оксиды с температурой плавления 2 050°С. Такой окисел будет при резке твердым, удалить его трудно. И, наконец, алюминий очень хорошо проводит тепло, поэтому потребуется большая концентрация мощности и большой расход газа. Аналогично не подвергаются газокислородной резке высоколегированные, высокоуглеродистые и хромоникелевые стали.

При работе с аппаратами газокислородной резки важно правильно подобрать скорость перемещения сопла и расходы воздуха и газа. Например, слишком большая скорость резки, помимо значительного отставания режущей струи, даёт неровную бороздчатую поверхность реза; cлишком малая скорость резки вызывает оплавление кромок на входной стороне и увеличивает ширину реза, что влечет за собой значительные потери металла. Наиболее простой способ определить скорость резания по характеру выброса искр и шлака: они должны выбрасываться с обратной стороны заготовки под небольшим углом от вертикальной оси.
К недостаткам этого вида резки относят большую ширину реза (вдоль которого, к тому же, остаются наплывы, грат и окислы), плохое его качество, невозможность прохода по криволинейным контурам малых радиусов, значительное термическое воздействие на металл. Неравномерный нагрев создаёт напряжения в металле и деформирует его, искажая геометрическую форму. Напряжения могут быть полностью сняты лишь с помощью термической обработки, а это большие дополнительные затраты. К тому же это способ подходит далеко не для каждого вида металла.

Плазменная резка

Практически все недостатки газокислородной резки можно исключить при использовании плазмы. Первые станки для плазменной резки металла появились где-то в 50-60 годах прошлого века. Данное оборудование было настолько громоздким и дорогостоящим, что приобреталось в основном только машиностроительными гигантами. В конце прошлого века плазменная резка металла стала более доступной и сейчас распространена повсеместно.

Плазменная резка металла производится за счет интенсивного расплавления металла вдоль линии реза теплом сжатой электрической дуги и последующего удаления жидкого металла высокоскоростным плазменным потоком. По своей сути плазма – это полностью или частично ионизированный газ, обладающий температурой 15 000 – 20 000°С. Соответственно, нетрудно догадаться, что производительность плазменной резки будет в разы больше газокислородной, температура которой достигает всего 1 800°С.

На сегодняшний день плазменная резка является самым действенным способом раскроя металла, имеющим ряд особенностей, делающих ее лидером в области металлообработки. Так, процесс резки металла плазмой не требует заправки газовых баллонов и их доставки, присадок для резки ценных металлов или особого соблюдения мер пожарной безопасности. Для плазменной резки необходимы только электроэнергия и воздух, а в качестве расходных материалов – сопла и электроды, поэтому данный вид является одним из самых экономичных способов.

Плазменная резка экономически целесообразна для обработки:

алюминия и сплавов на его основе толщиной до 120 мм;
меди толщиной до 80 мм;
легированных и углеродистых сталей толщиной до 50 мм;
чугуна толщиной до 90 мм.
При толщине металла от 120 до 200 мм обработка плазмой возможна, однако выгоднее в данном случае использовать газокислородную резку.

В процессе раскроя металла крайне важны такие характеристики, как толщина и теплопроводность. Соответственно, при подборе оборудования необходимо учитывать простой факт: чем выше теплопроводность разрезаемого металла, тем больше теплоотвод и меньше возможная толщина обрабатываемого листа, К примеру, толщина листа меди должна быть меньше, чем листа из нержавейки.

Однако данный метод имеет и ряд недостатков. В первую очередь метод плазменной резки – термический, что неизбежно влияет на качество кромок металла: происходит частичная потеря материала, кромка приобретает большую твердость, а последующая обработка требует дополнительных затрат. Однако качество кромок, образующихся при плазменной резке, значительно лучше, чем при газокислородной: окалина отсутствует, а ширина зоны с цветами побежалости в пять раз меньше.

Лазерная резка

Это один из передовых методов, заключающийся в интенсивном воздействии лазерного луча на металл.

Не будем останавливаться на технических аспектах получения лазера, скажем только, что преимуществ у этого метода масса: самая маленькая ширина реза, которая может достигать всего 0,1 мм, высокая производительность, прекрасное качество поверхности, отсутствие динамических или статических напряжений, воздействующих на металл, благодаря четко направленному световому потоку лазера в зону резания. Полученные края металлоизделий ровные, без заусенцев, однако на срезе может быть виден след от воздействия высоких температур. Если изготавливается «ответственная» деталь, то без дополнительной механообработки не обойтись.

Крупнейшая компания по производству специальной дорожной техники Vermeer Manufacturing Co. использует в своем производстве всего две установки лазерной резки, которые разрезают 20-25 тонн металла в день и обеспечивают заготовками девять сборочных линий дорожной техники.
Лазерный луч позволяет разрезать металлы толщиной до 15-20 мм, хотя наибольший эффект достигается при толщине 6 мм. Существенным недостатком лазерной резки является низкий КПД самого лазера (всего 15%), что не позволяет обрабатывать листы толще 12 мм. К тому же не все металлы можно резать лазером: алюминий, титан и высоколегированные стали обладают сильными отражательными свойствами, и мощности лазера попросту может не хватить для всей толщины металла.

Гидроабразивная резка

Гидроабразивная резка – это самая инновационная и прогрессивная технология резки металла. Сила струи воды, выходящей из сопла под огромным давлением, действительно поражает воображение: она способна резать до 300 мм (!) стали.

Сердце системы водоструйной резки – насос сверхвысокого давления. Сейчас существуют экспериментальные модели станков с давлением воды 6 000 бар. Проходя через рубиновое, сапфировое или алмазное сопло шириной всего 0,1 мм, вода ускоряется до трехкратной скорости звука и образуется тонкая сфокусированная струя, которая может обрабатывать практически все типы материалов.

Скорость гидроабразивной резки очень велика: например, при резке листа из нержавеющей стали толщиной 100 мм она доходит до 22 мм/мин, а при толщине в 1 мм – 2 700 мм/мин. При резке стекла скорость может составлять до 11 000 мм/мин.
При резке мягких материалов используется чистая струя воды, а за счет перемешивания в качестве абразива гранатового песка можно производить резку материалов любой твердости.

За рубежом проводились эксперименты по сравнению эффективности метода гидроабразивной резки с традиционными технологиями. В качестве «сильнейшего конкурента» был выбран лазер. Обе установки резали пакеты из металлических пластин толщиной 0,3 мм каждая. В результате испытаний было установлено, что при толщине разрушаемого пакета пластин менее 6 мм более эффективным по энергоемкости и скорости оказался метод лазерной резки, а при толщине пакета свыше 6 мм абсолютно лидирует метод гидроабразивной резки.

Важнейшим преимуществом технологии водоструйной резки перед другими видами обработки является отсутствие нагрева разрезаемых заготовок, т.е. отсутствие термического воздействия на материал, что исключает напряжения и деформации обрабатываемого материала. Результатом являются резы поразительно высокого качества, не требующие последующей дорогостоящей обработки.

Некоторые материалы не могут быть разрезаны лазером из-за отражения, а в случае плазменной резки – когда материал не является токопроводящим. В этом плане гидроабразивная резка является универсальным методом, однако она предполагает намокание детали, что может быть критично для металлов, подверженных коррозии.

Технология резки водой имеет еще одно неоспоримое преимущество – тонкая, как волос, струя, создает существенно меньшие потери материала по сравнению с традиционными процессами.

Огромным недостатком метода гидроабразивной резки металла можно назвать крайне высокую стоимость резки: один час работы на подобной установке обойдется вам примерно в 1 500 рублей. К тому же рабочие детали очень быстро изнашиваются из-за высокого давления и требуют постоянного контроля и ремонта. В общем, если вы решили приобрести станок гидроабразивной резки, будьте готовы к постоянным высоким расходам.

При резке металла толщиной 50 мм ширина реза при использовании гидроабразивной установки составляет 2 мм, а газокислородной – 20 мм. Это дает экономию 15 кг металла на 1 метр реза.
Перспективы развития отрасли

Перечисленные способы применяются на практике и известны всем. Но ученые разрабатывают новые способы: например, в Германии создали установку для резки металла с помощью электромагнитного импульса, которая работает быстро, бесшумно и не оставляет следов. Также проводятся эксперименты по резке с помощью ультрзвука. Возможно, что уже в обозримом будущем они получат повсеместное распространение.